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Abstract. A P3-decomposition of a graph is a partition of the edges of
the graph into paths of length two. We give a simple necessary and suf-
ficient condition for a semi-complete multigraph, that is a multigraph
with at least one edge between each pair of vertices, to have a P3-
decomposition. We show that this condition can be tested in strongly
polynomial-time, and that the same condition applies to a larger class
of multigraphs. We give a similar condition for a P3-decomposition of
a semi-complete directed graph. In particular, we show that a tourna-
ment admits a P3-decomposition iff its outdegree sequence is the degree
sequence of a simple undirected graph.
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1 Introduction

A decomposition of a graph (multigraph, directed graph) G is a collection of
edge-disjoint subgraphs G1, G2, . . . , Gk of G, whose union is G. A decomposition
in which each subgraph Gi is isomorphic to a fixed graph H, is called an H-
decomposition of G.

Decompositions of complete graphs have been studied for a long time, in the
context of combinatorial designs. A (v, k, λ)-design is a collection of k element
subsets of a v-element set, such that every pair of distinct elements is contained in
exactly λ different subsets. A (v, k, λ)-design can be easily seen to be equivalent
to a Kk-decomposition of the λ-complete multigraph of order v, in which there
are λ edges between each pair of vertices. Perhaps the most significant result on
designs is Wilson’s theorem [13], that if v, k, λ satisfy some obvious necessary
divisibility conditions, and if v is large enough for fixed k and λ, then a (v, k, λ)-
design always exists.

There are many other problems on decomposition of complete graphs. The
Oberwolfach problem [1] was to characterize 2-regular graphs of order 2n + 1
that decompose K2n+1. An old conjecture of Ringel [11] states that K2n+1 has a
T -decomposition for any tree T with n edges. Another conjecture of Gyarfas [6]
states that if T1, T2, . . . , Tn are trees with Ti having i edges, Kn+1 has a de-
composition into subgraphs G1, G2, . . . , Gn such that Gi is isomorphic to Ti, for
1 ≤ i ≤ n.



On the other hand, for general graphs, Dor and Tarsi [4] showed that the
H-decomposition problem is NP -Complete for any fixed graph H having a con-
nected component with at least 3 edges. Brys and Lonc [2], showed that H-
decomposition is polynomial-time solvable for graphs H in which each compo-
nent has at most 2 edges.

In this paper, we consider decomposition problems for semi-complete multi-
graphs and directed graphs. A multigraph or directed graph is said to be semi-
complete if there is at least one edge between every pair of vertices. These are
more general than complete graphs, but with sufficient structure that may en-
able decomposition problems to be solved efficiently. In particular, we consider
the simplest non-trivial decomposition problem, that of decomposing a graph
into paths of length 2.

A P3-decomposition of an arbitrary graph or directed graph can be found
in polynomial-time by a reduction to the perfect matching problem in the line
graph. In the case of multigraphs also, the problem can be solved in strongly
polynomial-time by a reduction to the b-matching problem. However, the line
graphs may contain Ω(n2) vertices and Ω(n3) edges for a graph with n vertices.
This gives an inefficient algorithm, although it runs in polynomial-time. In the
case of simple undirected graphs, a much simpler characterization is given by the
classical theorem of Kotzig [9], that a P3-decomposition exists iff each connected
component has even number of edges. No such simple condition is known for
multigraphs or directed graphs, although some partial results can be found in [3,
10].

We give a simpler condition, not involving the line graph, and a faster algo-
rithm to decide whether a given semi-complete multigraph or directed graph has
a P3-decomposition. In the case of multigraphs, we show that the same condition
applies to a large class of multigraphs, characterized by forbidden induced sub-
graphs. Our hope is that studying the simplest case of P3-decomposition would
help in generalizing some of the classical results on decomposition of complete
graphs to semi-complete multigraphs and directed graphs.

2 Multigraphs

We consider a multigraph of order n to be the complete graph on n vertices
with a non-negative integer weight wij , called the multiplicity, assigned to each
edge ij. A multigraph is said to be semi-complete if wij > 0 for all edges ij.
We call it semi-complete to emphasize the fact that the multiplicities of edges
could be different, although all are positive. The size of a multigraph is the sum
of the weights of all edges in the complete graph. The degree of a vertex u in
a multigraph G is the sum of weights of edges incident with u, and is denoted
dG(u). The underlying simple graph of a multigraph is obtained by deleting all
edges of weight 0 and ignoring weights of other edges.

Let P3 denote the set of all paths of order 3 in the complete graph. For an
edge ij, let Pij denote the set of paths of order 3 that contain the edge ij. A
P3-decomposition of a multigraph is a function f : P3 → N , such that for every



edge ij, ∑
P∈Pij

f(P ) = wij .

A matching M in a graph is a collection of disjoint edges. For any matching
M , let N(M) denote the set of edges in the graph that are not in M but have
an endpoint in common with some edge in M . For any subset S of edges, let
V (S) denote the subset of vertices that are incident with some edge in S. Let
w(S) =

∑
e∈S we denote the sum of weights of edges in S.

Lemma 1. A semi-complete multigraph G of even size has a P3-decomposition
iff for every matching S in G, w(N(S)) ≥ w(S).

Proof. Suppose G has a P3-decomposition f . Any path of order 3 that contains
an edge in S must contain an edge in N(S). Also, it cannot contain any other
edge in S. Therefore,

w(S) =
∑
e∈S

we =
∑
e∈S

(∑
P∈Pe

f(P )

)
≤

∑
e∈N(S)

(∑
P∈Pe

f(P )

)
= w(N(S) .

To prove the converse, we use Tutte’s 1-factor theorem [12]. Consider a new
graph L(G) which contains wij distinct vertices Vij corresponding to each edge
ij in G. For every path i, j, k in G, all vertices in Vij are adjacent to all vertices
in Vjk. It is then easy to see that G has a P3-decomposition iff L(G) has a
perfect matching. Given a perfect matching in L(G), let f(i, j, k) be the number
of vertices in Vij that are matched to vertices in Vjk, and vice versa.

A subset S of vertices in L(G) is said to be compatible if for all edges ij in
G, either S ∩ Vij = ∅ or S ∩ Vij = Vij . We identify a compatible subset S of
vertices in L(G) by the subset E(S) of edges ij in G for which S ∩ Vij = Vij .

If G does not have a P3-decomposition, then L(G) does not have a perfect
matching. By Tutte’s theorem, there exists a subset S of vertices in L(G) such
that O(L(G) − S) > |S|, where O(L(G) − S) is the number of connected com-
ponents of odd order in L(G)− S. Let S be a minimal such set. Note that since
all vertices in Vij have the same neighbors in L(G), S must be a compatible
set. If for some vertices x, y ∈ Vij , x ∈ S but y 6∈ S, then O(L(G) − (S \ {x}))
≥ O(L(G)−S)− 1, contradicting the minimality of S. Similarly, we can assume
that the vertex set of any non-trivial component of L(G)− S, and the set of all
isolated vertices in L(G) − S, are compatible sets. Let A be the set of isolated
vertices in L(G)− S. Then E(A) is a matching in G.

Let C be the vertex set of any non-trivial component of L(G)−S. No edge in
E(A) can have an endpoint in common with an edge in E(C). If an edge in E(S)
has both endpoints in V (E(C)), we can remove all vertices corresponding to this
edge from S, and get a smaller set that violates Tutte’s condition, contradicting
the minimality of S. Thus we can assume that E(C) contains all edges in the
subgraph of G induced by V (E(C)).

Now if there are two non-trivial components in L(G) − S, say with vertex
sets C1, C2, then V (E(C1)) and V (E(C2)) must be disjoint sets. Since G is semi-
complete, there exists an edge in G joining a vertex in V (E(C1)) to a vertex in



V (E(C2)). This edge must be in E(S). Again, removing vertices corresponding
to this edge from S gives a smaller set violating Tutte’s condition.

Therefore L(G) − S contains at most one non-trivial component containing
vertices corresponding to edges in some induced subgraph of G. The number of
odd components in L(G)−S is therefore at most w(E(A))+1 while every edge in
E(S) is incident with some vertex in V (E(A)). Thus |S| = w(N(E(A))). Since G
has even size and hence L(G) has even order, we must have O(L(G)−S) ≥ |S|+2,
which implies w(E(A)) + 1 ≥ w(N(E(A))) + 2, or w(E(A)) > w(N(E(A))),
giving the required matching.

ut

While Lemma 1 gives a characterization of semi-complete multigraphs that
have a P3-decomposition, it cannot be directly used to get an efficient algorithm
to test whether a given semi-complete multigraph has such a decomposition. We
strengthen Lemma 1 to get a more efficient strongly polynomial-time algorithm.
We show that instead of checking the condition in Lemma 1 for all matchings
S, it is sufficient to check it for all matchings that are contained in any fixed
maximum weight matching.

Theorem 1. Let G be a semi-complete multigraph of even size and let M be
a matching with maximum weight in G. G has a P3-decomposition iff for every
subset of edges S ⊆M , w(N(S)) ≥ w(S).

Proof. The necessity of the condition follows from Lemma 1. To prove sufficiency,
suppose for contradiction, that the condition is satisfied but G does not have
a P3-decomposition. By Lemma 1, there exists a matching S in G such that
w(N(S)) < w(S). Let S be a minimal such matching. We claim that S must
be contained in M . If not, let A = S \M and B = S ∩M . By minimality of
S, we must have w(N(B)) ≥ w(B), and hence w(N(A) \ N(B)) < w(A). Let
M1 = M ∩ (N(A) \ N(B). Then (M \M1) ∪ A is a matching in G of weight
greater than M , a contradiction. ut

Theorem 1 can be used to get an O(n4 log n) time algorithm to test whether
a given semi-complete multigraph has a P3-decomposition. First we find an ar-
bitrary maximum matching M in the weighted complete graph, using Edmond’s
algorithm [5]. This takes O(n3) time. Now construct a flow network as follows.
For every edge a ∈ M add a node va, and for every edge b 6∈ M , add a node
vb. If edges a and b have a common endpoint, add a directed edge from va to
vb with infinite capacity. Add a source node s and directed edges from s to va
of capacity wa, for all edges a ∈ M . Add a sink node t, and edges from vb to
t of capacity wb, for all edges b 6∈ M . Now, it is easy to verify that G satisfies
the condition in Theorem 1 iff this network has a maximum flow value of w(M).
Since the network has O(n2) nodes and edges, the maximum flow can be found
in O(n4 log n) time [8].

Theorem 2. Any semi-complete multigraph of order n, even size and maximum
multiplicity at most n− 2, is P3-decomposable. The bound on the multiplicity is
the best possible.



Proof. If G is such a multigraph, then for any matching S of size k in G, w(S) ≤
k(n− 2). However, w(N(S)) ≥ |N(S)| = 2k(k− 1) + 2k(n− 2k) = 2k(n−k− 1).
Since k ≤ n/2, we have w(S) ≤ w(N(S)), and Lemma 1 implies G has a P3-
decomposition. If n is even, and G has a perfect matching with edges of weight
n−1, and all other edge weights are 1, then G does not have a P3-decomposition.

ut

It is possible that similar results could hold for other decompositions of semi-
complete multigraphs, with different bounds on the multiplicity.

We next show that Theorem 1 applies to a much larger class of multigraphs.
Note that if Lemma 1 holds for a class of multigraphs, then so does Theorem 1,
since the proof of the theorem does not use any properties of the multigraph G.

Let F be the set of graphs with exactly 2 connected components, each of
which is either an odd cycle or the claw K1,3. Let G be the set of graphs that do
not contain any induced subgraph isomorphic to any graph in F .

Theorem 3. Let G be any multigraph of even size whose underlying simple
graph belongs to the class G. Let M be any maximum weight matching in G.
Then G has a P3-decomposition iff for any subset S ⊆M , w(N(S)) ≥ w(S).

Proof. We only need to show that Lemma 1 holds for this class of multigraphs.
We follow the same argument, and choose a set S of vertices in L(G) such
that O(L(G) − S) > |S|, the number of non-trivial components in L(G) − S is
minimum, and subject to this, S is minimal. Following the same argument, each
non-trivial component of L(G) − S contains vertices corresponding to edges in
some induced subgraph of G. Suppose there are 2 non-trivial components with
vertex sets C1, C2. If there is an edge with positive weight in G joining some
vertex in V (E(C1)) to a vertex in V (E(C2)), we can use the same argument and
get a smaller set S with the same properties.

Suppose there is no such edge and let G1 and G2 be the underlying simple
graphs of the subgraphs of G induced by V (E(C1)) and V (E(C2)), respectively.
If both G1 and G2 are either not bipartite or contain a vertex of degree at least
3, then we can find an induced subgraph of G1 ∪ G2 that is in F , contradict-
ing the assumption. Otherwise, at least one of G1, G2, say G1, is bipartite and
has maximum degree 2. Then the edges in E(C1) can be partitioned into two
matchings. Take the matching with smaller weight, and add vertices in L(G)
corresponding to edges in it to the set S. The vertices corresponding to edges in
the other matching will now be isolated vertices. The new set S will still satisfy
O(L(G)−S) > |S|, but will have fewer non-trivial components in L(G)−S, con-
tradicting the original choice of S. Therefore there must exist an edge in E(S)
joining a vertex in V (E(C1)) to a vertex in V (E(C2)), and we can complete the
argument as before. ut

Note that the graphs in the family F themselves satisfy the hypothesis of
Theorem 3 but do not have a P3-decomposition. They are thus the minimal
graphs for which Theorem 3 fails. The class G of graphs includes some well-
known classes such as complete multipartite graphs, split graphs, complements



of planar graphs etc. Theorem 3 is analogous to an old result of Fulkerson et.
al. [7], who proved an Erdos-Gallai type condition for the existence of an f -factor
in certain multigraphs. In particular, the forbidden induced subgraphs in their
case were graphs with two disjoint odd cycles, while we need the claw also in
this case. Although their proof is quite different, it can also be proved using our
approach, by reducing the f -factor problem to a perfect matching problem in the
standard way. Again, for this class of multigraphs, the condition for existence of
an f -factor can be checked in strongly polynomial-time, using network flows, as
shown in [7].

3 Directed Graphs

A directed graph without self-loops is said to be semi-complete if for every pair
of distinct vertices u, v, at least one of the ordered pairs (u, v), (v, u) is an edge
in the graph. A directed graph is said to be oriented if for any two vertices u, v,
at most one of (u, v), (v, u) is an edge in the graph. An oriented semi-complete
directed graph is called a tournament.

The outdegree of a vertex u in a directed graph is the number d+(u) of
vertices v such that (u, v) is an edge in the graph. The underlying multigraph
M(D) of a directed graph D is obtained by ignoring the directions of edges in
the directed graph. If both (u, v) and (v, u) are edges in D, then the edge uv
has multiplicity two in M(D). We will denote the edges in M(D) also by the
same ordered pair as the corresponding edge in D, although these are undirected
edges. A P3-decomposition of a directed graph is a partition of the edges of the
graph into directed paths of length two.

Lemma 2. An oriented graph D has a P3-decomposition iff there exists a span-
ning subgraph H of M(D), such that dH(u) = d+(u) for all vertices u in D.

Proof. Suppose D has a P3-decomposition. Let H be the spanning subgraph
of M(D) defined by the set of edges (u, v), such that u, v, w is a path in the
decomposition for some vertex w. For every edge (u, v) in the directed graph,
either (u, v) is an edge in H, or there exists a vertex w such that w, u, v is a path
in the decomposition, in which case (w, u) is an edge in H. Thus the degree of
u in H is exactly d+(u).

Conversely, suppose there exists such a subgraph H. For any vertex u, con-
sider the set of incoming edges (w, u) that are in H. If there are k such edges,
there must be exactly k outgoing edges (u, v) that are not edges in H. We pair
up these edges arbitrarily to form paths of length two in the directed graph.
Doing this for all vertices u, gives a P3-decomposition of D.

ut

Corollary 1. A tournament has a P3-decomposition iff its outdegree sequence
is the degree sequence of a simple undirected graph.

Corollary 1 gives simple necessary and sufficient conditions, in terms of the
outdegree sequence, for a tournament to have a P3-decomposition. These also



give a simple O(n2) time algorithm to decide whether a given tournament has a
decomposition.

Lemma 2 does not hold if the directed graph has 2-cycles, since pairing an
arbitrary incoming edge with an arbitrary outgoing edge may lead to a 2-cycle
rather than a path of length 2. However, we show that for semi-complete directed
graphs, this can be avoided in almost all cases.

A pair of vertices u, v is said to be an isolated pair in a semi-complete directed
graph if both (u, v) and (v, u) are edges in the graph, and for every vertex
w 6∈ {u, v}, (u,w), (w, v) are edges but (w, u), (v, w) are not edges in the graph.
Clearly, a semi-complete directed graph with an isolated pair of vertices cannot
have a P3-decomposition, since the edge (u, v) is not contained in any path of
length two.

Theorem 4. Let D be a semi-complete directed graph that is not a complete
directed graph on 3 vertices and does not contain an isolated pair of vertices.
Then D has a P3-decomposition iff there exists a spanning subgraph H of M(D)
such that for every vertex u, dH(u) = d+(u).

Proof. One part of the theorem follows in the same way as Lemma 2. If there
exists a P3-decomposition of D, take the first edge of each path in the decom-
position in H. This satisfies the required property.

Conversely, suppose there exists such a subgraph H. As before, consider the
set of incoming edges (w, u) at a vertex u that are in H. If there are at least
two such edges, we can pair them with outgoing edges at u that are not in H,
such that (w, u) is not paired with (u,w), for any vertex w. The pairs of edges
thus form paths of length two. The only case when this is not possible is if for
some vertex w, (w, u) is the only incoming edge at u in H, and (u,w) is the only
outgoing edge not in H. In this case we call u a bad vertex and w the partner
of u.

Choose a subgraph H of M(D) such that dH(u) = d+(u) for all vertices u,
and the number of bad vertices is minimum. If there are no bad vertices, we get
a P3-decomposition.

Let u be a bad vertex with partner w. If we replace the edge (w, u) by the
edge (u,w) in H, in the resulting graph H ′, u is no longer a bad vertex. The
choice of H implies that w must be a bad vertex in H ′. Thus all outgoing edges
at w must be in H, and no incoming edge at w is in H.

Case 1. Suppose there is a vertex v such that for some x ∈ {u,w}, both (x, v)
and (v, x) are edges in D. Without loss of generality, assume x = u. Then the
edge (u, v) must be in H, but (v, u) is not in H. Replacing (u, v) by (v, u) in H,
gives a subgraph H ′ with the same degrees as H. Since u is not a bad vertex in
H ′, v must be a bad vertex in H ′. Let v′ be the partner of v in H ′. Then v′ 6= u
and suppose v′ 6= w. If the edge (u, v′) is present in D, it must also be present in
H and H ′, since u is a bad vertex in H with partner w. But this contradicts the
fact that v′ is the partner of v in H ′. A similar argument holds if the edge (v′, u)
is present in D. Since D is semi-complete, one of these must hold, and we get



a contradiction. Therefore, the only remaining possibility is that v′ = w. Thus
{u, v, w} induces a complete directed graph in D and a triangle in H. Note that
for all x ∈ {u, v, w} and y 6∈ {u, v, w}, any edge (x, y) in D must be in H, while
(y, x) will not be in H.

Case 1.1. Suppose there is a vertex x ∈ {u, v, w} such that for some vertex
y 6∈ {u, v, w}, both (x, y) and (y, x) are edges in D. Consider the subgraph H ′ ob-
tained by replacing the edge (x, y) by (y, x) and choosing edges (p, x), (x, q), (p, q)
for {p, q} = {u, v, w} \ {x}. In this subgraph, none of {u, v, w} can be a bad ver-
tex, since none of them has exactly one incoming edge in H ′. Also, y cannot be
a bad vertex. If both (y, p) and (y, q) are edges in D, then neither of them is
in H ′, so y must have at least two incoming edges in H ′. If say (y, p) is not an
edge in D, then (p, y) is an incoming edge at y in H ′, and even if it is the only
incoming edge in H ′ at y, it can be paired with an outgoing edge at y that is
not in H ′. Thus H ′ has fewer bad vertices than H, a contradiction.

Case 1.2. We may now assume that for every vertex x ∈ {u, v, w} and y 6∈
{u, v, w}, exactly one of the edges (x, y), (y, x) is in D. We say a vertex y 6∈
{u, v, w} is of type 1 if there are at least two edges (x, y) for x ∈ {u, v, w} in D,
otherwise it is of type 2.

Suppose a, b are two distinct vertices of type 1, and without loss of generality
(a, b) is an edge in D. Suppose (a, b) is not in H. Since a, b are of type 1, we
can find two distinct vertices p, q ∈ {u, v, w} such that (p, a) and (q, b) are edges
in D and also in H. Consider the subgraph H ′ obtained by replacing the edges
(p, a) and (q, b) by (a, b), and the edges in the triangle induced by {u, v, w} by
the edges (p, q), (q, p), (p, r), (q, r), where r ∈ {u, v, w} \ {p, q}. None of {u, v, w}
can be a bad vertex in this subgraph, and neither can any of a, b, since both
have an incoming edge in the subgraph such that the oppositely directed edge
is not an edge in D. Again we get a subgraph with fewer bad vertices.

A similar argument holds if there are two vertices a, b of type 2, and (a, b) is
an edge in D and also in H. We can find two vertices p, q ∈ {u, v, w} such that
(a, p), (b, q) are edges in D but not in H. Replacing the edge (a, b) in H by the
edges (a, p), (b, q), and the edges in the triangle {u, v, w} by (p, r), (q, r), gives a
subgraph with fewer bad vertices.

We may now assume that any edge in D whose endpoints are of type 1 is an
edge in H, while any edge in D with endpoints of type 2 is not in H. Let A be
the subset of vertices of type 1 and B the subset of vertices of type 2 and let
|A| = n1, |B| = n2. Then∑

x∈B

dH(x) =
∑
x∈B

d+(x) ≥ 2n2 + n2(n2 − 1)/2 = n2(n2 + 3)/2

since there are at least 2 outgoing edges from each vertex in B to {u, v, w} and
B itself induces a semi-complete directed graph. Since B is an independent set
in H, and there are at most n2 edges in H joining vertices in B to {u, v, w},
there are at least n2(n2 + 1)/2 edges in H joining vertices in B to vertices in A.



Suppose there are m edges in the subgraph of D induced by A. Then∑
x∈A

d+(x) =
∑
x∈A

dH(x) ≥ 2m+ 2n1 + n2(n2 + 1)/2 .

However, a vertex in A has at most one outgoing edge to {u, v, w}, and at most
n2 edges to B. Therefore∑

x∈A

d+(x) ≤ m+ n1 + n1n2 .

This implies
m ≤ n1n2 − n1 − n2(n2 + 1)/2 .

But since D is semi-complete m ≥ n1(n1 − 1)/2. This implies

(n1 − n2)2 ≤ −n1 − n2 .

This is possible only if n1 = n2 = 0, which implies D is a complete directed
graph of order 3.

Case 2. Now suppose that for every vertex x ∈ {u,w} and y 6∈ {u,w}, exactly
one of the edges (x, y), (y, x) is present in D. We say a vertex y 6∈ {u,w} is of
type 1 if neither (y, u) nor (y, w) are edges in D, of type 2 if both of them are
edges, of type 3 if (y, w) is an edge but not (y, u), and of type 4 otherwise.

Suppose there exists a vertex a of type 3 and a vertex b of type 4. Without
loss of generality, we may assume (a, b) is an edge in D. If (a, b) is in H, we can
replace it by the edges (a,w) and (b, u) and delete the edge (w, u) from H, to get
a subgraph H ′ with the same degrees. None of the vertices a, b, u, w can be a bad
vertex in H ′, contradicting the choice of H. On the other hand, if (a, b) is not
in H, we can replace the edges (u, a) and (w, b) by the edges (a, b) and (u,w),
to get a graph with fewer bad vertices. We may therefore assume, without loss
of generality, that there are no vertices of type 4.

Suppose a is a vertex of type 2 or 3 and b is a vertex of type 2. If either edge
(a, b) or (b, a) is in H, we can replace it by edges (a,w) and (b, u), and delete
the edge (w, u) to get a subgraph with fewer bad vertices. Similarly, suppose a
is a vertex of type 1 and b is a vertex of type 1 or 3. If either edge (a, b) or (b, a)
is not an edge in H, we can replace the edges (u, b), (w, a) by this edge, and add
the edge (u,w) to get a subgraph with fewer bad vertices.

Let A be the set of vertices of type 1, B the vertices of type 2, and C the
vertices of type 3. Let |A| = n1, |B| = n2, and |C| = n3. As argued in the
previous case, ∑

x∈B

dH(x) =
∑
x∈B

d+(x) ≥ n2(n2 + 3)/2 .

All edges in H incident with a vertex in B must also be incident with a vertex
in A. Let m be the number of edges in the subgraph of D induced by A, and m1

the number of edges in D with one endpoint in A and one in C. Then∑
x∈A

d+(x) =
∑
x∈A

dH(x) ≥ 2m+ 2n1 +m1 + n2(n2 + 3)/2 .



But ∑
x∈A

d+(x) ≤ m+m1 + n1n2

which implies
m ≤ n1n2 − 2n1 − n2(n2 + 3)/2 .

Again, since m ≥ n1(n1 − 1)/2, we get

(n1 − n2)2 ≤ −3n1 − 3n2 .

This is possible only if n1 = n2 = 0, which implies all vertices are of type 3, and
thus {u,w} is an isolated pair in D.

This completes the proof of the theorem.
ut

Theorem 4 also gives an efficient algorithm to test whether a given semi-
complete directed graph has a P3-decomposition. We can first test for isolated
pairs of vertices in O(n2) time. The theorem of Fulkerson, Hoffman and McAn-
drew [7], gives a simple necessary and sufficient condition for a semi-complete
multigraph to contain a spanning subgraph with specified degrees. Further such
a subgraph can be found using network flows. The network constructed has O(n)
nodes and O(n2) edges. Thus the maximum flow can be found in O(n3) time [8].
After finding the subgraph H, if it exists, we can modify it to remove bad ver-
tices, if any. Following the proof of Theorem 4, each removal takes O(n2) time.
Thus, overall, finding the P3-decomposition can be done in O(n3) time.

4 Conclusion

In this paper we have given simple necessary and sufficient conditions for semi-
complete multigraphs and directed graphs to have a P3-decomposition. We have
also shown that the conditions can be checked in strongly polynomial-time using
network flows. However, we believe there should be faster algorithms to check
these conditions, without resorting to general network flows.

We would also like to consider more general decomposition problems for semi-
complete multigraphs and directed graphs. We conclude with a specific problem:
When can a d-regular semi-complete multigraph of even order be decomposed
into d perfect matchings? A necessary condition is that a subgraph induced by
any subset of k vertices must contain at most dbk/2c edges. We leave open the
question of whether this condition is sufficient.
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